Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antib Ther ; 2(3): 65-69, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33928224

RESUMO

BACKGROUND: Disulfide-linked knobs-into-holes (dKiH) mutation is a well-validated antibody engineering technique to force heterodimer formation of different Fcs for efficient production of bispecific antibodies. An artificial disulfide bond is created between mutated cysteine residues in CH3 domain of human IgG1 Fc whose positions are 354 of the "knob" and 349 of the "hole" heavy chains. The disulfide bond is located adjacent to the exposed loop with allotypic variations at positions 356 and 358. Effects of the variation on the biophysical property of the Fc protein with dKiH mutations have not been reported. METHODS: We produced dKiH Fc proteins of high purity by affinity-tag fusion to the hole chain and IdeS treatment, which enabled removal of mispaired side products. Thermal stability was analyzed in a differential scanning calorimetry instrument. RESULTS: We firstly analyzed the effect of the difference in allotypes of the Fcs on the thermal stability of the heterodimeric Fc. We observed different melting profiles of the two allotypes (G1m1 and nG1m1) showing slightly higher melting temperature of G1m1 than nG1m1. Additionally, we showed different characteristics among heterodimers with different combinations of the allotypes in knob and hole chains. CONCLUSION: Allotypic variations affected melting profiles of dKiH Fc proteins possibly with larger contribution of variations adjacent to the disulfide linkage.

2.
Protein Sci ; 24(3): 328-40, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25492858

RESUMO

ROBO1, fibronectin Type-III domain (Fn)-containing protein, is a novel immunotherapeutic target for hepatocellular carcinoma in humans. The crystal structure of the antigen-binding fragment (Fab) of B2212A, the monoclonal antibody against the third Fn domain (Fn3) of ROBO1, was determined in pursuit of antibody drug for hepatocellular carcinoma. This effort was conducted in the presence or absence of the antigen, with the chemical features being investigated by determining the affinity of the antibody using molecular dynamics (MD) and thermodynamics. The structural comparison of B2212A Fab between the complex and the free form revealed that the interfacial Tyr(L) 50 (superscripts L, H, and F stand for the residues in the light chain, heavy chain, and Fn3, respectively) played important roles in Fn3 recognition. That is, the aromatic ring of Tyr(L) 50 pivoted toward Phe(F) 68, forming a CH/π interaction and a new hydrogen bond with the carbonyl O atom of Phe(F) 68. MD simulations predicted that the Tyr(L) 50-Phe(F) 68 interaction almost entirely dominated Fab-Fn3 binding, and Ala-substitution of Tyr(L) 50 led to a reduced binding of the resultant complex. On the contrary, isothermal titration calorimetry experiments underscored that Ala-substitution of Tyr(L) 50 caused an increase of the binding enthalpy between B2212A and Fn3, but importantly, it induced an increase of the binding entropy, resulting in a suppression of loss in the Gibbs free energy in total. These results suggest that mutation analysis considering the binding entropy as well as the binding enthalpy will aid in the development of novel antibody drugs for hepatocellular carcinoma.


Assuntos
Fibronectinas/química , Proteínas do Tecido Nervoso/química , Receptores Imunológicos/química , Tirosina/química , Fibronectinas/metabolismo , Humanos , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/metabolismo , Estrutura Terciária de Proteína , Receptores Imunológicos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Termodinâmica , Tirosina/metabolismo , Proteínas Roundabout
3.
Neurosci Lett ; 402(1-2): 167-72, 2006 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-16644120

RESUMO

Intracolonic (i.col.) administration of the PAR2-activating peptide (PAR2AP) SLIGRL-NH2 slowly develops visceral hypersensitivity to i.col. capsaicin in ddY mice. Thus, we further analyzed roles of PAR2 in colonic hypersensitivity, using the novel potent PAR2AP, 2-furoyl-LIGRL-NH2 and PAR2-knockout (KO) mice. In ddY mice, i.col. 2-furoyl-LIGRL-NH2 produced delayed (6 h later) facilitation of capsaicin-evoked visceral nociception, an effect being much more potent than SLIGRL-NH2. Such effects were mimicked by i.col. trypsin. In wild-type (WT), but not PAR2-KO, mice of C57BL/6 background, i.col. PAR2 agonists caused delayed facilitation of sensitivity to capsaicin. The PAR2-triggered visceral hypersensitivity was abolished by a bradykinin B2 receptor antagonist, HOE-140. Our data thus provide ultimate evidence for role of PAR2 in colonic hypersensitivity, and suggest involvement of the bradykinin-B2 pathway.


Assuntos
Bradicinina/metabolismo , Colo/fisiopatologia , Hiperalgesia/patologia , Oligopeptídeos/administração & dosagem , Receptor PAR-2/fisiologia , Animais , Capsaicina/farmacologia , Colo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligopeptídeos/farmacologia , Medição da Dor/métodos , Receptor PAR-2/agonistas , Receptor PAR-2/deficiência , Fatores de Tempo , Tripsina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...